

Introduction

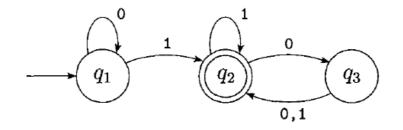
A Deterministic Finite Automaton (DFA) is a simple computational model that accepts or rejects a given string of symbols by running through a state sequence uniquely determined by the string.

A DFA can be formally defined as a 5-tuple (Q, Σ , δ , q_0 , F), where,

- 1. **Q** is the finite set of available states,
- 2. $\pmb{\Sigma}$ is the finite set of accepted symbols, also called the alphabet,
- 3. $\delta: Q \mathrel{X} \Sigma \rightarrow Q$ is the transition function,
- 4. $\mathbf{q}_0 \in \mathbf{Q}$ is the start state, and
- 5. $\mathbf{F} \subseteq \mathbf{Q}$ is the set of accepted states.

As said, DFAs are capable of processing strings whose characters are part of the DFA's alphabet. Starting in state q_0 , the automaton takes one symbol of the input string at a time and performs the corresponding state transition defined by its $\delta(q, c)$ (being $q \in Q$ the current state and $c \in \Sigma$ the symbol being processed). The process finishes when the last symbol has been processed. At this point, we say that the DFA accepts the input string if it is in a state $q \in F$. Otherwise, the input is rejected.

As an example, in the following figure it is represented a three-state DFA that we call **M**.



Formally described:

 $\textbf{M}=(\textbf{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \textbf{q}_{0}, \textbf{F}), \text{ where }$

1. Q = {q₁, q₂, q₃},

2. **Σ = {0, 1}**,

3. $\boldsymbol{\delta}$ is described as

	0	1
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_2	q_2

4. \mathbf{q}_1 is the start state, and

Notice that **M** will accept strings such as **1**, **1111**, **0010010000** or **0101000111001**. Contrary, strings like **0**, **0000**, **111000** or **1010101010** aren't accepted. Indeed, **M** recognizes the language of strings that contain at least one 1 and an even number of 0s follow the last 1.

Let's try to build a program that allows us to determine if a DFA formally defined would accept or not a given string.

Input

The input will consist in several rows:

- 1st will come the set of states of the DFA.
- 2nd the alphabet supported by the DFA.
- 3rd the start state.
- 4th the set of accepted states (note that there could exist more than one accepted state).

- N rows, one per state and in order of appearance, defining the transition function for such state using pairs of symbol-destination.

- Finally, the input string.

In sake of clarity, the input for trying to discern if M (our previous example DFA) would accept 100010 would be:

q1 q2 q3

01

q1 q2 0 q1 1 q2 0 q3 1 q2 0 q2 1 q2

100010

Output

The output will be a single sentence depending on the evaluation's outcome:

- If the input string has symbols that aren't from the DFA's alphabet: "Invalid input string!"

- If the input string is accepted: "Input string accepted"

- If the input string is rejected: "Input string rejected"
- If the definition does not correspond with a DFA: "This is not a deterministic finite automaton!"

Note that the later situation may arise when:

- A transition involving a symbol not existing in the DFA's alphabet is defined.

- A transition involving a state not existing in the set of states of the DFA is defined.

- There isn't exactly a single transition defined for each pair of state-symbol. If that rule is broken we would be in front of a Nondeterministic Finite Automaton (NFA), so we better leave that topic for another year :)

Example 1

Input

q1 q2 q3 q4 0 1 q1 q4 0 q2 1 q1 0 q3 1 q1

0 q3 1 q4

0 q4 1 q4

011001100

Output

Input string accepted

Example 2

Input

s q1 q2 r1 r2

a b

S

q1 r1

a q1 b r1

- a q1 b q2
- a q1 b q2
- a r2 b r1

a r2 b r1

baba

Output

Input string rejected

Example 3

Input q1 q2 a b c q1 q1 a q2 b q1 c q2 a q1 b q1 abc Output

This is not a deterministic finite automaton!