Jutge.org

The Virtual Learning Environment for Computer Programming

ABABABAB

Consider the following formula:

A + B * A + B * A + B * A + B

We can obtain many different values by replacing each *A* with an arbitrary number from set A, and each *B* with an arbitrary number from set B.

Even more, in this problem we are allowed to place parentheses in any way we want. For example, (A + B) * (A + B) * (A + B) * (A + B) can be a very big number. We don't like very big numbers.

Output the number of ways we can obtain a result which is at most *M*.

Input

The first line of input contains four numbers: N, M, Q_A , Q_B . We have $1 \le N \le 16$, $1 \le M \le 1000$, $1 \le Q_A$, $Q_B \le 1000$. N is the number of operands (8 in the formula above, it always starts with A).

The second line contains Q_A non-negative integers — these are the elements of A. Each of them is different, and in range from 0 to 10000.

The third line contains Q_B non-negative integers — these are the elements of \mathcal{B} . Each of them is different, and in range from 0 to 10000.

Output

Output the number of ways of obtaining at most *M*, modulo 1000003.

Sample input 1	Sample output 1
8 1000 1 1 1 1	429
Sample input 2	Sample output 2
8 1000 2 2 1 2 1 2	109824
Sample input 3	Sample output 3
2 1000 3 3 400 500 600 400 500 600	6

Problem information

Author : Eryk Kopczynski Generation : 2013-09-02 16:01:55

© *Jutge.org*, 2006–2013. http://www.jutge.org