Cheapest Routes X81287


Statement
 

pdf   zip

html

We have collected abundant information about the local roads and accommodations in a region that we will traverse. Our plan is to go from city A to city B and we would like to spend the least possible money. For each road connecting two cities u and v we know the cost ω(u,v)=ω(v,u) to travel along that road (tolls, fuel, meals during the journey, …). Every time we go from a city u to one of its neighbors v we must stop at v and spend there one night; we know the cost ω′(v) of stopping at each city v (the cost added by A and B to our route is 0, since they are our initial and final points). All costs, of vertices and of edges, are non-negative. Thus the cost of the route

P = [Av1, …, vnB]

is

  cost(P) = ω(A,v1) + ω(v1,v2) + … + ω(vn,B)  + ω′(v1)+…+ω′(vn).

Write a program in C++ which, given an undirected weighted graph with non-negative costs at the vertices and at the edges, and two vertices A and B, returns the cost of the cheapest route to go from A to B, or an indication that not such route exists.

Input All data in the input are non-negative integers. The input starts with two integers 2≤n≤10000 and m, 0≤m≤20n. After that, a sequence of non-negative integers ω′(0), …, ω′(n−1) of the weights ω′(u) of the n vertices of the graph. Then the input contains a sequence of the m edges in the graph as triplets of the form ⟨u,v,ω(u,v)⟩. Vertices u and v are integers in {0,…,n−1} and the weights ω(u,v) are non-negative integers. You can assume that there are no two different edges connecting the same pair of vertices nor any edge connecting a vertex to itself. Finally, there is a sequence of pairs ⟨Ai, Bi⟩, with each Ai and Bi denoting vertices of the graph (0≤Ai,Bi<n).

Output For each pair ⟨Ai, Bi⟩ in the input sequence the program writes the cost δ of the cheapest route between Ai and Bi. with the format c(Ai,Bi) = δ. If no route exists between Ai and Bi the program writes c(Ai,Bi) = +oo. The ouput for each case is ended with a newline (endl).

Public test cases
  • Input

    6 8
    3 6 10 15 5 2
    0 1 2  1 2 7  2 3 2 
    0 2 1  1 3 4  2 4 8
    3 4 2  3 0 5
    0 4
    1 4
    2 4
    3 1 
    4 1
    2 5
    2 2
    
    

    Output

    c(0,4) = 19
    c(1,4) = 21
    c(2,4) = 8
    c(3,1) = 4
    c(4,1) = 21
    c(2,5) = +oo
    c(2,2) = 0
    
  • Information
    Author
    Conrado Martinez
    Language
    English
    Other languages
    Catalan Spanish
    Official solutions
    C++
    User solutions
    C++