Jutge.org

The Virtual Learning Environment for Computer Programming

Laplacian Matrices (1)	
------------------------	--

A square matrix *M* of size $n \times n$ that contains only zeros and ones, and only zeros in the diagonal, is called a *binary matrix*.

The Laplacian of a binary matrix *M* is another $n \times n$ square matrix *L* with the following content:

- All cells L_{ii} (i.e. the diagonal of L), are equal to the number of ones in row i of M.
- Any other cell in *L* contains the same value than the corresponding cell in *M* but with opposite sign (since *M* contains only 0 and 1, these *L* cells will contain 0 or -1 accordingly).

For example, the following binary matrix 5×5 :

0	1	1	0	0
1	0	0	1	1
0	1	0	0	1
1	1	1	0	1
0	0	0	0	0

has as Laplacian the following Matrix:

2	-1	-1	0	0
-1	3	0	-1	-1
0	-1	2	0	-1
-1	-1	-1	4	-1
0	0	0	0	0

Write a program that reads one binary matrix and prints its Laplacian following the format shown in the examples.

Input

Input consists of a number n > 0, the dimension of the binary matrix, followed by $n \times n$ integers describing the matrix: all of them either 0 or 1, where all the diagonal entries are zero.

Output

The output must contain the Laplacian transform of the input matrix.

Sample input 1	Sample output 1
3	1 -1 0
0 1 0	0 1 -1
0 0 1	-1 -1 2
1 1 0	

Sample input 2

Sample input 3

Sample output 3

Sample output 2

2 -1 -1 0 -1 2 0 -1 -1 -1 3 -1 0 -1 -1 2

Problem information

Author : Generation : 2024-07-10 12:23:20

© *Jutge.org*, 2006–2024. https://jutge.org